• Evaluate SUM(1/(n + n^2)) from n = 1 to infty
  • zkfcfbzr@lemmy.world
    link
    fedilink
    English
    arrow-up
    4
    ·
    6 months ago
    solution

    With partial fractions:

    1/(n + n²) = 1/(n(n+1)) = A/n + B/(n+1)

    A(n+1) + Bn = 1

    n = 0 gives A = 1, n = -1 gives B = -1

    1/(n+n²) = 1/n - 1/(n+1)

    Σ (n = 1 to ∞) 1/(n+n²) = Σ (n = 1 to ∞) 1/n - Σ (n = 1 to ∞) 1/(n+1)

    = Σ (n = 1 to ∞) 1/n - Σ (n = 2 to ∞) 1/n

    = 1/1 + Σ (n = 2 to ∞) 1/n - Σ (n = 2 to ∞) 1/n

    = 1

    Guessing this is the standard solution